21.2.5 一元二次方程根与系数的关系 教案

所属栏目: 九年级上册 次浏览
  • 最多预览前五页
  • 文本简介
21.2.5 一元二次方程根与系数的关系 教案
21.2.5一元二次方程根与系数的关系教案21.2.5一元二次方程根与系数的关系【教学设计总意图】:本课是一节公式定理的新知课第一课时,曾在旧版的教材中占据很重要的位置,不但在中考中体现,延伸到高中的数学教学也有广泛的应用.本册教材又将曾一度删去的内容恢复,可见根系关系的重要.它为进一步解决一元二次方程、二次函数以及相关的数学问题提供一些新的思路.但本课毕竟是第一课时,让学生体会公式基本内容,在头脑中形成积极印象很关键.所以从绝大多数同学掌握的知识程度出发,针对本班学生的特点,本课在(a≠0,b2–4ac≥0)的前提条件下设计,所有的一元二次方程均有解.教学目标:1、理解根系关系的推导过程;2、掌握不解方程,应用根系关系解题的方法;3、体会从特殊到一般,再有一般到特殊的推导思路教学重点:应用根系关系解决问题;教学难点:根系关系的推导过程教学流程:引入新知,推导新知,巩固新知,应用新知,教学过程:一、前2天悄悄地听到咱班的郑帅和董沐青的一段对话,内容如下:郑:我说董沐青,我有一个秘密,你想听吗?董:什么秘密?郑:你知道咱们可爱的张老师年龄到底有多大吗?董:哦?郑:呵呵,这绝对是个秘密,我不能直接告诉你,我这么说吧:她的年龄啊是方程x2–12x+35=0的两根的积,回去你把2根求出来就知道了.董:咳,你难不住我,我不用求根就已经知道答案了,而且我还告诉你,张老师的年龄啊还是方程x2-35x-200=0的2根的和呢.郑:哈哈,你太有才了。对了,咱们应该也让同学猜一猜,不解方程,能不能求出张老师的年龄.【设计意图】创设一个情境:学生自我娱乐的同时自我探讨数学知识,本班学生活跃,他们自己在平时也会开一些类似的玩笑.希望这一次能够激起班级进一步学习数学的兴趣.二、求出下列方程的2根,计算2根和与2根积的值,并猜想2根和、2根积与一元二次方程各项系数之间的关系序号一元二次方程x1x2x1+x2x1x2(1)x2–5x+6=02356(2)2x2–3x+1=01(3)3x2+x-2=0-1--【设计意图】二次项系数为1有1题;二次项系数不为1有2题,系数性质符号各有不同.让学生尽量体会与猜想2根和、2根积与系数之间的关系.三、引导学生独立证明:x1和x2是一元二次方程ax2+bx+c=0(a≠0,b2–4ac≥0)x1+x2=-,x1x2=注意:负号不能漏写【设计意图】学生在已有公式法解一元二次方程的知识基础上,可以最快速度说出x1和x2的值,接下来将字母系数表示的x1和x2的值代入相应的代数式x1+x2和x1x2得出根系关系的结论,凭借学生自己的现有能力可以解决证明过程.还可以让学生体会,数学知识的一些结论是在计算的过程中产生的,数学中那一系列的字母并不是高不可攀.四、应用第一组习题:不解方程,求下列方程的2根和与2根积(1)x2–3x+1=0(2)3x2–2x-2=0(3)2x2–3x=0(4)3x2=1【设计意图】新知产生后,直接应用新知是学生的模仿阶段,也是本课教学最基本的知识目标,这时需要强化记忆,除设计第1组习题外还设计板书例题和第2组习题.第一组习题小评时,可引导学生发现应用根系关系解决2根和与2根积的问题不需求出复杂的2根,同时渗透着整体代入的数学方法,为例2巩固知识奠定基础.例2:已知:x1和x2是一元二次方程x2-4x+1=0的2根,求下列代数式的值(1)+(2)x12+x22(3)(x1-x2)2学生练习:(1)+(2)(x1+1)(x2+1)【设计意图】本例对绝大多数同学来说是可以掌握的内容,也是研究根系关系应掌握的内容,还可以让学生进一步体会整体代入的数学思想方法.五、本课小结:六、课后作业:
喜欢 ()or分享